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Abstract 

AI is rapidly transforming the field of neuropharmacology by introducing sophisticated computational methodologies capable of addressing the multifactorial 

complexity of central nervous system (CNS) disorders. By integrating ML, DL, and NLP, AI enables the analysis of high dimensional biomedical data, 

including genomics, proteomics, metabolomics, neuroimaging, and electronic health records. These capabilities support high throughput screening, accelerate 

de novo drug design, and enhance target identification by uncovering subtle biological correlations and mechanistic insights that often elude traditional 

experimental paradigms. AI based frameworks facilitate in silico prediction of pharmacokinetics and pharmacodynamics, drug–target interactions, and blood–

brain barrier permeability. This empowers researchers to develop personalized therapeutic strategies for complex neurodegenerative and neuropsychiatric 

disorders such as Alzheimer’s disease, Parkinson’s disease, schizophrenia, and major depressive disorder. Several case studies underscore AI's translational 

potential: Benevolent AI’s application of NLP for drug repurposing in amyotrophic lateral sclerosis (ALS), Deep Genomics’ AI driven discovery of RNA 

targeted molecules, and Atomwise’s structure based compound optimization exemplify AI's impact across discovery and development pipelines. Despite its 

promise, the integration of AI into neuropharmacology is not without challenges. The opacity of deep learning models (“black box” problem), data 

heterogeneity, model generalizability, and evolving regulatory frameworks necessitate rigorous validation and interpretability efforts. This review 

comprehensively explores current applications, technological advancements, and future trajectories of AI in neuropharmacology. As the discipline evolves, AI 

stands poised as a foundational tool in the advancement of precision medicine, supporting more efficient, targeted, and individualized CNS pharmacotherapies. 
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1. Introduction 

Neuropharmacology, the scientific study of how drugs 

modulate neural function and behaviour, lies at the forefront 

of efforts to treat an expanding range of central nervous 

system (CNS) disorders, including neurodegenerative, 

neuropsychiatric, and neurodevelopmental conditions. 

Despite major advances in molecular neuroscience and 

pharmacological screening techniques, the development of 

effective CNS therapeutics remains profoundly challenging. 

Traditional drug discovery pipelines are hindered by low 

translational success, limited predictive power of animal 

models, and the intrinsic complexity of brain 

pathophysiology. Notably, over 90% of CNS targeting drug 

candidates fail in clinical trials, a rate significantly higher 

than for non CNS indications, largely due to inadequate target 

validation, poor blood–brain barrier (BBB) permeability 

predictions, and patient heterogeneity that confounds 

efficacy assessments.1 

Given the multifactorial and dynamic nature of brain 

diseases, there is an urgent need for paradigm shifting 

technologies that can manage, integrate, and interpret vast, 

heterogeneous datasets across molecular, imaging, and 

clinical domains. Artificial Intelligence (AI) particularly 

machine learning (ML), deep learning (DL), natural language 

processing (NLP), and data driven predictive modelling has 

emerged as a disruptive force in modern drug discovery. AI's 

capacity to model complex, nonlinear relationships and 

derive actionable insights from large scale, multimodal data 
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makes it uniquely suited to overcome longstanding barriers 

in neuropharmacology. Recent developments in AI have 

already demonstrated measurable impact. For instance, AI 

assisted platforms have accelerated target identification, 

enabled de novo molecule generation, and improved in silico 

pharmacokinetic profiling. Moreover, AI has been pivotal in 

stratifying patients for clinical trials and identifying novel 

biomarkers through integrative analysis of imaging and 

genomic data. These capabilities represent a significant 

departure from conventional reductionist methods, which 

often fail to capture the dynamic interactions within neural 

systems.2 

Despite its promise, the integration of AI into 

neuropharmacology is not without limitations. Challenges 

include the interpretability of AI models, lack of standardized 

datasets, data privacy concerns, and regulatory uncertainties. 

Nevertheless, the continuous evolution of explainable AI, 

federated learning, and real world validation frameworks is 

gradually addressing these issues. 

This review provides a comprehensive overview of how 

AI is reshaping the landscape of neuropharmacology. It 

outlines current methodologies, examines emerging 

technologies, highlights real world applications through case 

studies, and discusses the challenges and future directions 

necessary for successful clinical translation. As the field 

progresses towards precision neurotherapeutics, AI is poised 

to serve not merely as a supplementary tool but as a 

cornerstone of next generation CNS drug discovery and 

development.3,4  

2. AI Technologies in Neuropharmacology 

Advancements in AI have catalysed a paradigm shift in 

neuropharmacology by enabling high throughput, data driven 

methodologies to interrogate complex neural systems and 

pharmacodynamic responses. Traditional computational 

methods in pharmacology such as quantitative structure 

activity relationship (QSAR) models and rule based systems 

have proven inadequate in capturing the nonlinear, multi 

layered nature of central nervous system (CNS) disorders. 

These methods often suffer from limited scalability, rigid 

input feature engineering, and insufficient generalizability 

across heterogeneous datasets. Emerging AI technologies 

including ML, DL, NLP, and graph neural networks (GNNs) 

have significantly addressed these limitations by 

incorporating flexible, adaptive, and scalable computational 

frameworks.5 

ML forms the backbone of predictive modeling in 

neuropharmacology. Supervised learning algorithms (e.g., 

support vector machines, random forests) are used to classify 

disease phenotypes and predict drug response profiles using 

patient derived omics and imaging data. Unsupervised 

methods, such as k means clustering or principal component 

analysis (PCA), assist in uncovering latent subtypes in 

heterogeneous neurological disorders. However, 

conventional ML often depends heavily on manual feature 

extraction and lacks the depth to model temporal or spatial 

dependencies inherent in neural data.6 

DL, particularly convolutional neural networks (CNNs) 

and recurrent neural networks (RNNs), offers a powerful 

alternative. CNNs are adept at extracting hierarchical features 

from high dimensional inputs like functional MRI or EEG 

signals, enabling improved detection of biomarkers and 

disease progression patterns. RNNs, including long short 

term memory (LSTM) networks, are applied to model time 

series neurophysiological data, capturing longitudinal drug 

effects. These architectures reduce the need for manual 

feature design and outperform classical ML in multi modal 

integration. Yet, they are often criticized for being “black 

box” systems, making biological interpretation difficult.7  

NLP has emerged as a transformative tool in literature 

mining and real world data extraction. Using named entity 

recognition, relationship extraction, and context aware 

models like BERT, NLP systems can automatically 

synthesize pharmacogenomic relationships from 

unstructured data such as electronic health records (EHRs) 

and biomedical literature. This addresses a key bottleneck in 

traditional systematic reviews and drug repurposing 

pipelines, which were limited by manual curation speed and 

comprehensiveness.8 

Graph Neural Networks (GNNs) represent a recent 

innovation particularly suited to neuropharmacology, where 

complex networks of interacting genes, proteins, receptors, 

and drugs can be naturally represented as graphs. GNNs 

propagate information through graph structures, capturing 

both local and global topological features. In drug discovery, 

GNNs can predict novel drug target interactions and 

polypharmacological effects by learning from known 

biochemical and disease networks. They overcome the 

limitations of conventional vector based models that fail to 

capture structural relationships.9 AI technologies provide a 

robust and scalable foundation for modern 

neuropharmacology. While limitations such as 

interpretability, data sparsity, and model generalization 

persist, the convergence of these techniques marks a 

substantial departure from reductionist approaches. By 

enabling integrative and dynamic modeling of complex CNS 

systems, AI empowers a new era of precision driven 

neurotherapeutics and accelerates the translation of discovery 

into clinical intervention.10 

3. AI in Drug Discovery and Target Identification 

AI is increasingly redefining the landscape of drug discovery 

and target identification in neuropharmacology, especially 

for complex and multifactorial conditions such as 

Alzheimer’s disease, Parkinson’s disease, and amyotrophic 

lateral sclerosis. Traditional drug discovery relies heavily on 

high throughput screening (HTS), molecular docking, and 

empirical hit to lead optimization. Although these approaches 
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have contributed significantly to the development of CNS 

targeted agents, they are limited by high failure rates, time 

consuming experimental cycles, and inefficiencies in 

accurately identifying viable drug target interactions, 

particularly within the complex environment of the brain.10 

Structure based drug design (SBDD) typically employs 

crystallographic or homology modeled protein structures for 

docking potential ligands. However, its predictive accuracy 

is constrained by incomplete structural data, protein 

flexibility, and limited binding site resolution. Similarly, 

ligand based approaches, such as QSAR modeling, depend 

on curated compound libraries and predefined molecular 

descriptors, often failing when applied to novel chemical 

spaces or poorly understood targets.12 

AI driven methods address these bottlenecks through 

data intensive, predictive modeling techniques. Deep 

learning models, such as CNNs and GCNs, can learn spatial, 

electronic, and topological features directly from raw 

molecular input either as SMILES strings, molecular graphs, 

or 3D coordinates eliminating the need for manual descriptor 

engineering. For instance, models like DeepDock and 

AtomNet have demonstrated high accuracy in predicting 

protein ligand binding affinities by capturing complex 

intermolecular interactions.13 

AI integrates multi omics datasets including genomics, 

transcriptomics, proteomics, and connectomics to uncover 

novel druggable targets that are contextually relevant to 

disease mechanisms. For example, integrative AI platforms 

like Benevolent AI use knowledge graphs and natural 

language processing to synthesize evidence across vast 

biological datasets and biomedical literature, accelerating 

hypothesis generation for novel therapeutic targets.14 In 

neurodegenerative disorders, AI’s ability to model biological 

networks and disease progression dynamics enables the 

identification of targets that are not just statistically 

significant, but mechanistically central to disease 

phenotypes. AI also facilitates in silico validation through 

virtual screening and prioritization of compound libraries, 

drastically reducing the cost and time required for 

experimental assays.15 

3.1. Applications in CNS pharmacology 

Applications of artificial intelligence in central nervous 

system (CNS) pharmacology are rapidly expanding, offering 

advanced capabilities that enhance the efficiency and 

precision of drug discovery workflows. One significant 

application is the early stage prediction of blood brain barrier 

(BBB) permeability, a critical parameter for CNS active 

compounds, where AI models outperform traditional rule 

based or in vitro assays by leveraging chemical structure data 

and multi modal features.10  

AI algorithms can identify targetable nodes within 

disease specific protein protein interaction networks by 

analyzing network topology and functional annotations, thus 

uncovering intervention points that are central to disease 

pathophysiology. In neuropsychiatric disorders, which are 

often characterized by high genetic heterogeneity, AI 

facilitates the deconvolution of polygenic risk architecture. 

By integrating large scale genomic data, it helps pinpoint 

functional biological pathways that may serve as therapeutic 

targets. Moreover, AI is instrumental in the discovery and 

optimization of CNS active compounds with multi target 

efficacy profiles, moving beyond the “one drug–one target” 

paradigm to more holistic therapeutic strategies suitable for 

complex disorders. Despite these promising applications, 

challenges persist. Model interpretability remains a concern, 

especially with deep learning systems, which are often 

criticized as "black boxes." Data sparsity, particularly for 

high quality CNS specific datasets, limits model training and 

validation. Additionally, algorithmic bias stemming from 

imbalanced training data can impact generalizability.16 AI 

based systems offer scalable, data driven alternatives that 

overcome many of the intrinsic limitations of traditional 

neuropharmacological methods. The integration of these 

technologies into CNS drug discovery pipelines is expected 

to enhance target validation, improve lead optimization, and 

reduce attrition rates in early phase development, ultimately 

accelerating the path to precision neurotherapeutics.17 

4. Predictive Modeling in Pharmacokinetics and 

Pharmacodynamics 

One of the most critical components in 

neuropharmacological drug development is understanding 

the pharmacokinetics (PK) and pharmacodynamics (PD) of 

candidate compounds. These parameters encompassing 

absorption, distribution, metabolism, excretion (ADME), and 

drug receptor interactions determine both efficacy and safety 

profiles. Traditional in vitro and in vivo approaches, though 

foundational, are resource intensive and often fail to capture 

the intricate dynamics of central nervous system (CNS) 

pharmacology, particularly due to the complexities of blood 

brain barrier (BBB) permeability and neuro specific 

metabolic pathways.18 AI has increasingly been adopted to 

overcome these limitations by enabling data driven predictive 

modeling. Machine learning algorithms, particularly deep 

neural networks and ensemble models, have shown high 

accuracy in forecasting ADME properties by learning from 

large, heterogeneous datasets derived from cheminformatics, 

in vitro bioassays, and clinical pharmacokinetic studies. 

These models can predict time dependent plasma 

concentrations, tissue distribution kinetics, and metabolic 

biotransformation pathways under various physiological 

conditions.19 

A significant advantage of AI based models is their 

capacity to predict BBB permeability with greater reliability 

than traditional rule based systems such as Lipinski’s Rule of 

Five or simple QSAR models. AI tools like DeepTox, which 

employs deep learning architectures for toxicity and 

metabolism prediction, and ADMETlab, a comprehensive 
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web based platform integrating multiple ML algorithms, have 

been increasingly used to assess CNS drug likeness early in 

the pipeline. These platforms facilitate in silico screening and 

optimization of drug candidates, reducing the reliance on 

costly animal studies.20 Ultimately, the integration of 

predictive AI models into PK/PD analysis enhances 

translational fidelity, shortens development timelines, and 

supports precision dosing strategies in neuropharmacology.21 

5. Patient Stratification and Personalized 

Neurotherapeutics 

The increasing adoption of AI in neuropharmacology has 

opened new avenues for precision medicine, particularly in 

the realm of patient stratification and individualized 

therapeutic interventions. Traditional approaches to 

classifying patients with neurological or psychiatric 

conditions often rely on broad diagnostic categories that fail 

to capture the heterogeneity inherent in these disorders. AI 

driven clustering algorithms, including unsupervised learning 

techniques such as k means, hierarchical clustering, t 

distributed stochastic neighbor embedding (t SNE), and self 

organizing maps (SOMs), have shown remarkable utility in 

identifying clinically meaningful subgroups within complex 

patient populations.22 These models can integrate diverse 

data modalities ranging from neuroimaging (e.g., MRI, PET), 

electrophysiological signals (EEG, MEG), and 

transcriptomics, to longitudinal clinical and behavioral 

datasets to uncover latent patterns associated with disease 

progression, therapeutic response, or relapse risk. In 

disorders like Alzheimer’s disease, for instance, machine 

learning has enabled stratification based on amyloid and tau 

deposition patterns, structural atrophy metrics, and cognitive 

decline trajectories. Similarly, in major depressive disorder 

and schizophrenia, clustering based on neuroimaging and 

genetic signatures has facilitated the identification of 

treatment responsive subtypes.23 

AI enabled stratification plays a critical role in 

optimizing clinical trial design, minimizing placebo effects, 

and improving signal detection in therapeutic efficacy. This 

stratified approach not only enhances drug development 

pipelines but also supports the implementation of 

personalized neurotherapeutics, where treatment regimens 

are tailored according to an individual's unique biological and 

clinical profile. As AI methodologies continue to evolve, 

their integration into clinical neuropharmacology is expected 

to transform the paradigm from population based 

interventions to truly individualized care strategies.24 

6. Case Studies 

6.1. Case study 1: BenevolentAI and ALS drug repurposing 

AI has emerged as a pivotal enabler of drug repurposing 

strategies, particularly for complex neurodegenerative 

diseases such as amyotrophic lateral sclerosis (ALS), where 

conventional drug discovery approaches are often slow and 

prone to failure. A compelling demonstration of this 

paradigm shift is evident in the work conducted by 

Benevolent AI, which harnessed an AI driven platform to 

identify novel therapeutic indications for existing drugs. 

Utilizing a proprietary biomedical knowledge graph, the 

company integrated vast volumes of structured and 

unstructured data spanning peer reviewed publications, 

clinical trial reports, biochemical pathways, and 

transcriptomic datasets to extract mechanistically relevant 

insights. In this specific case, Benevolent AI’s platform 

employed NLP and machine learning algorithms to traverse 

complex biological associations. Through this integrative 

computational approach, the Janus kinase (JAK) inhibitor 

baricitinib, originally approved for rheumatoid arthritis, was 

identified as a candidate for repurposing in ALS. The 

platform highlighted baricitinib's potential to modulate 

neuroinflammatory pathways implicated in ALS pathology, 

particularly by interfering with aberrant JAK STAT signaling 

involved in microglial activation and neuronal degeneration. 

Following the AI guided prediction, baricitinib advanced 

rapidly to preclinical validation and early phase clinical 

investigation, representing a significant acceleration 

compared to traditional drug discovery timelines. This case 

underscores the transformative role of AI in hypothesis 

generation, data synthesis, and rational repurposing of 

pharmacological agents for CNS disorders. By systematically 

uncovering latent therapeutic potential within existing 

pharmacopoeia, AI systems such as BenevolentAI offer a 

scalable solution for addressing urgent unmet needs in 

neuropharmacology.25,27 

6.2. Case study 2: Deep genomics and RNA based 

neurotherapeutics 

The convergence of AI with RNA biology has enabled a new 

frontier in neuropharmacology, particularly in the design and 

development of RNA targeted therapeutics for rare 

neurological diseases. Deep Genomics, a biotechnology 

company at the forefront of this convergence, has developed 

an AI powered platform known as the AI Workbench capable 

of analyzing massive RNA sequence datasets to predict the 

functional consequences of genetic variants and design 

antisense oligonucleotides (ASOs) with therapeutic potential. 

Unlike conventional bioinformatics tools, which often rely on 

limited rule based algorithms, Deep Genomics’ platform 

leverages deep learning architectures trained on experimental 

transcriptomic and genomic data. This system processed over 

69 billion RNA interactions to identify patterns of aberrant 

splicing associated with pathogenic mutations. The AI 

models predict not only the likelihood of a splicing defect but 

also the potential for its correction using customized ASOs, 

which are short, synthetic nucleotide sequences designed to 

modulate RNA function by targeting specific pre mRNA 

elements. In the context of neuropharmacology, this 

approach is particularly promising due to the high prevalence 

of splicing related dysfunction in rare neurodevelopmental 

and neurodegenerative disorders. By enabling high 
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throughput target discovery and therapeutic design, the AI 

Workbench has expedited the transition from genetic insight 

to preclinical candidate development. A notable outcome 

includes the identification of lead ASOs for previously 

untreatable monogenic CNS disorders, representing a 

paradigm shift in precision neurotherapeutics. This case 

exemplifies how AI is not merely augmenting, but 

fundamentally redefining, the landscape of RNA based drug 

discovery in neurology.28,29 

7. Challenges and Limitations 

Despite the growing momentum of AI applications in 

neuropharmacology, several critical challenges hinder its 

seamless integration into clinical and translational 

workflows. These limitations pertain primarily to algorithmic 

transparency, data quality and interoperability, and the 

evolving landscape of regulatory compliance.30 

7.1. Model interpretability 

One of the foremost obstacles in deploying AI driven models, 

particularly DL architectures, in neuropharmacology is the 

issue of interpretability. Deep neural networks often function 

as “black box” systems, offering high predictive performance 

but limited explanatory insight into their decision making 

processes. In clinical and pharmacological contexts, where 

decisions directly impact patient outcomes and regulatory 

approval, such opacity is problematic. Without transparent 

reasoning or mechanistic pathways, stakeholders including 

clinicians, regulatory authorities, and pharmaceutical 

developers may lack confidence in adopting AI generated 

outputs for therapeutic development or patient stratification. 

Emerging approaches such as attention mechanisms, 

explainable AI (XAI) frameworks, and saliency mapping aim 

to address this gap, but their application in neuroscience 

remains limited and requires further validation.31 

7.2. Data heterogeneity 

Neuropharmacology is inherently multi dimensional, 

involving diverse data types such as neuroimaging, 

electrophysiology, molecular profiles, behavioural metrics, 

and clinical annotations. Integrating such heterogeneous, 

high throughput datasets poses significant technical and 

computational challenges. Disparities in data quality, 

resolution, formats, and sampling methods complicate model 

training and validation, often resulting in overfitting or 

diminished generalizability. Standardization of data 

acquisition protocols, development of cross platform 

ontologies, and robust feature harmonization techniques are 

essential to enable effective multi modal AI modelling.32 

7.3. Regulatory oversight 

The regulatory environment governing AI applications in 

neuropharmacology remains nascent and fragmented. Unlike 

traditional therapeutics, AI algorithms evolve through 

iterative learning, making it difficult to establish fixed 

validation metrics or static performance baselines. 

Regulatory agencies such as the FDA and EMA are 

beginning to draft frameworks for Software as a Medical 

Device (SaMD) and algorithmic transparency, but specific 

guidance for AI driven drug discovery and clinical trial 

optimization in the CNS domain is still under development. 

The lack of standardized protocols for evaluating AI model 

safety, efficacy, and reproducibility continues to be a 

bottleneck in achieving full clinical translation.33 

8. Future Prospects 

The future of neuropharmacology is poised to be 

fundamentally reshaped by the convergence of AI  with 

emerging biomedical technologies such as advanced 

neuroimaging, wearable biosensors, and digital phenotyping. 

These synergistic domains offer the potential to unlock 

unprecedented insights into brain function and disease 

progression, facilitating the development of more precise and 

dynamic pharmacological interventions.34 The integration of 

AI with neuroimaging modalities such as functional MRI 

(fMRI), positron emission tomography (PET), and diffusion 

tensor imaging (DTI) is enabling real time analysis of brain 

activity patterns, structural connectivity, and receptor level 

interactions. Machine learning algorithms can detect subtle 

neuroanatomical or functional changes predictive of early 

stage pathology, thereby supporting earlier diagnosis and 

drug intervention points. Additionally, the fusion of AI with 

wearable technologies allows for continuous, longitudinal 

monitoring of neurological and behavioral parameters in real 

world settings. These high resolution datasets can be 

algorithmically transformed into digital biomarkers, 

facilitating adaptive dosing strategies and more personalized 

neuropharmacological therapies.35 

One of the most promising frontiers lies in AI driven 

digital twin modeling. By integrating patient specific multi 

omics data, neural dynamics, and 

pharmacokinetic/pharmacodynamic profiles, AI can simulate 

individualized brain models that respond virtually to 

candidate compounds. These “in silico patients” have the 

potential to revolutionize preclinical research by reducing 

reliance on animal models and accelerating hypothesis 

testing in a controlled, scalable manner. AI enabled platforms 

will increasingly support simulation based regulatory 

submissions, closed loop neurostimulation systems, and 

augmented reality assisted cognitive interventions. As these 

innovations mature, AI is expected to underpin a paradigm 

shift toward predictive, preventive, and precision 

neuropharmacology in the coming decade.36 

9. Conclusion 

Artificial intelligence is emerging as a cornerstone in the 

evolution of neuropharmacology, offering unprecedented 

capabilities to decode complex neural processes, optimize 

drug discovery, and enable precision based interventions. 

Through the integration of multi omics data, clinical 

phenotypes, and real world evidence, AI driven platforms are 
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accelerating the identification of novel therapeutic targets 

and refining the design of CNS active compounds. 

Importantly, AI enhances predictive modeling of 

pharmacokinetics, stratifies patient populations based on 

individual risk profiles, and informs adaptive clinical trial 

designs. Nevertheless, the full realization of AI’s potential in 

neuropharmacology depends on overcoming persistent 

challenges. These include the need for model interpretability, 

harmonization of diverse data sources, standardization of 

validation protocols, and the development of ethical 

frameworks for AI assisted decision making in clinical 

contexts. Additionally, interdisciplinary collaboration among 

neuroscientists, pharmacologists, computer scientists, and 

regulatory bodies will be essential to ensure translational 

impact. In summary, while obstacles remain, the synergistic 

application of AI technologies offers a compelling path 

forward. By bridging the gap between computational 

intelligence and neurobiological complexity, AI stands 

poised to transform neuropharmacology into a more 

predictive, personalized, and effective discipline, ultimately 

improving outcomes for patients with neurological and 

psychiatric disorders. 
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